ON TWO CONSEQUENCES OF CH ESTABLISHED BY
SIERPINSKI

R. POL AND P. ZAKRZEWSKI

ABSTRACT. We study the relations between two consequences of
the Continuum Hypothesis discovered by Wactaw Sierpiniski, con-
cerning uniform continuity of continuous functions and uniform
convergence of sequences of real-valued functions, defined on sub-
sets of the real line of cardinality continuum.

1. INTRODUCTION

In his classical treaty Hypothése du continu [18] Waclaw Sierpiriski
distinguished the following consequences of the Continuum Hypothesis
(CH) (the notation is taken from [18]):

Cys There exists a continuous function f: E — R, E CR, |E| =,
not uniformly continuous on any uncountable subset of F.

Cy There is a sequence of functions f, : F — R, E C R, |E| =
¢, converging pointwise but not converging uniformly on any
uncountable subset of E.

Sierpinski established the equivalences of Cy to several other state-
ments, notably, to the existence of a matrix of sets of real numbers
(called in [2] a BK-matrix), constructed under CH by Banach and Ku-
ratowski [1] (statement Cp; in [18]).

Bartoszyniski and Halbeisen [2] (see also [5]) proved that the existence
of a BK-matrix is independent of CH. They also pointed out that the
existence of a BK-matrix (hence statement Cy) is equivalent to the
existence of a subset of NV of cardinality ¢, intersecting each compact
set in NV in an at most countable set (following [2] we shall called such
sets K-Lusin), see [2, Proposition 1.1 and Lemma 2.3], cf. also [15].

Sierpinski [17] noticed that Cg implies Cy but he did not discuss
the converse implication. However, in Topology I by Kuratowski [8],
footnote (3) on page 533 suggests that the two statements are in fact
equivalent. We are not aware of any publication addressing the impli-
cation Cy = (s and this note is the result of our pondering on this
matter.
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We shall consider the following stratifications of statements Cg and
Cy for uncountable cardinals k < A < ¢:

Cs(\, k) There exists a set £ C R of cardinality A and a continuous
function f : EF'— R, which is not uniformly continuous on any
subset of E of cardinality k.

Cy(A, k) There exists a set £ C R of cardinality A (equivalently: for any
set & C R of cardinality A) and there is a sequence of functions
fn o E — R, converging on E pointwise but not converging
uniformly on any subset of E of cardinality k.

Clearly, statements C; are C;(¢,N;) in our notation, and C; implies
C; (A, k) for all uncountable cardinals K < A <'¢, i =8,9.

In this note we prove (in ZFC) that:

o Cs(c,¢) < Cy(c,c), and each of these statements is equivalent
to the assertion 0 = ¢, provided that the cardinal ¢ is regular
(cf. Theorem 3.4),

o (5(N,N;) & Cy(Ry,Ny), and each of these statements is equiv-
alent to the assertion b = N; (cf. Theorem 3.7).

Here 0 and b denote, as usual, the smallest cardinality of a dominating
and, respectively, an unbounded family in NY corresponding to the
ordering of eventual domination <* (cf. [5]).

An important role in our considerations is played by the notion of
a K-Lusin set which we extend (cf. [2]) declaring that an uncountable
subset F of a Polish space X is a k-K-Lusin set in X, ¥; < r < ¢, if
|E N K| < k for every compact set K C X.

The existence of a k-K-Lusin set of cardinality A in NV is equivalent
to Co(A, k) (cf. Theorem 2.3) and if £ C R, |E| = A, is a witnessing
set for Cs(\, k), then E is a k-K-Lusin set in some Gs-extension of E
(cf. Proposition 3.1).

However, it is not the case that every x-K-Lusin set is a witnessing
set for Cs(\, k). In particular, assuming CH, we show that there is a K-
Lusin set in the irrationals of cardinality ¢ such that every continuous
function f : EF — R is uniformly continuous on an uncountable subset
of E (cf. Theorem 3.3). Our reasoning to that effect yields also that
for every continuous function f : X — R defined on a Gs-set X in the
irrationals, there exists a closed copy of irrationals P in X such that f
is uniformly continuous on P (cf. Theorem 3.2).

The paper is organized as follows.

In Section 2 we establish the equivalences of Cy(\, k) to several other
statements, notably, to its topological counterparts (see Theorem 2.3).

Section 3 is devoted to Cs (A, k) and its relations to Cy(A, k) including
proofs of the equivalence Cs(\ k) < Co(A\ k) for Kk = A = ¢ and
k = A = N;. We end this section by listing some additional set-theoretic
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assumptions under which the equivalence Cg(c, N;) < Cy(c,Ny) is true.
Although the status of the implication Cy(c,®;) = Cs(c,N;) remains
unclear, these observations point out at difficulties in refuting it.

In Section 4 we gathered some comments and additional results re-
lated to the topic without proofs — we plan to present details elsewhere.

In this note P always denotes the set of irrationals of the unit interval
[0,1]. Tt is homeomorphic to the Baire space NV, the countable prod-
uct of the set of natural numbers N = {0,1,2,...} with the discrete

topology (cf. [7]).

2. UNIFORM CONVERGENCE OF POINTWISE CONVERGENT
SEQUENCES OF FUNCTIONS AND STATEMENT Cy(\, k)

The following result is based on Sierpinski’s reasoning [16], cf. Re-
mark 2.2(1) (an extension of this result is formulated in Section 4.3).

Theorem 2.1. For any Polish space X there is a sequence fy > fo...
of continuous functions f, : X — [0, 1] which converges to zero point-
wise but does not converge uniformly on any set with non-compact clo-
sure in X .

Proof. Since X embeds as a closed subspace in [1, +00)N+ (cf. [7, The-
orem 4.17]), where Ny = {n € N: n > 0}, it is enough to construct
desired functions on [1, +00)"+. So, with no loss of generality, we sim-
ply assume that X = [1,+o00)M+.

We begin with the Sierpinski functions s, : X — {0, 1, %, %, L hn=
1,2,..., defined by (cf. Remark 2.2)

0 if z(Ny) C[0,n).
We shall check that
(2) 51 > s > ... and lim s,(x) =0 for every x € X,

n—o0
(3) for any A C X, if the sequence (s,);2; converges uniformly on

A, then the closure A is compact.

The monotonicity in (2) is clear. If z € X and p € Ny is given, then
for any n > max{z(i) : ¢ < p} we have s,(z) < %, which gives the
second part of (2).

To make sure that (3) is true, we shall follow closely Sierpinski [16].
Let A C X and assume that the sequence (s,)%, converges uniformly
on A. This means that for each i € N, there is (i) € N, such that
Sm(x) < %, whenever m > (i) and z € A.

By (1), for any € X and i € Ny we have s|,()(z) > 1, and hence
x(i) < (i), for any = € A. Therefore, A is contained in the compact

set T][1,(i)] € X, and hence its closure A in X is compact.
i=1

Let us verify that for each n € N
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(4) the function s, is upper-semicontinuous,

i.e., for any r > 0 the set {x € X : s,(z) < r} is open in X. Since s,
is bounded by 1, it is enough to consider r < 1.

So let us fix n € Ny, » <1 and a € X with s,(a) < r, and for any

p € N4, let us consider the open set V,, defined by

5) Vy={reX: z(i)<n forall i<p}.
We shall show that we can always find p such that V), is a neighbourhood
of a contained in the set {z € X : s,(x) <r}.

If s,(a) =0, ie., a(i) <n forall i € Ny, cf. (1), then taking p such
that % < r, we have a € V,, and s,(x) < % < r for every x € V,, cf. (1)
and (5).

If s,(a) = &, where m = min{i : a(i) > n}, then since s,(a) < 1,
we have a(1) <n. Hencem >2andlet p=m—1. Thenp>1,a €V,
and for any z € Vj,, s,(x) < = <.

Having checked (4), we apply a classical theorem of Hahn (cf. [4,
1.7.15(c)]) to get, for each n, continuous functions f,; : X — [0, 1],
1 =1,2,..., such that

(6) fa1 > fo2>...and lim f,;(x) = s,(z) for every z € X.
71— 00

Finally, we define
(7) folx) = min fij(x) for z € X.
1,5

Clearly, the sequence f; > fo > ... consists of continuous functions
and converges pointwise to zero. Moreover, f,(z) > s,(z) for any
n € Ny and x € X. Consequently, for any A C X, if the sequence
(fn)o2, converges uniformly on A, then so does the sequence (s,)5
and hence by (3), A is compact.

O
Remark 2.2.
(1) The original Sierpinski functions were defined on N§+ by the
formula:
1 .
sn(a) = { Ml e0=n} if nexNy),
0 if n¢x(Ny).

Sierpinski was interested in neither reqularity of the functions
(in fact, s, are continuous on NT*) nor the monotonicity of the
function sequence.

(2) An approach similar to Sierpinski’s idea, in a different setting,
was rediscovered by Pincirolli [11, Lemma 2 and Proposition 7].

Recall that Cy(A, k) abbreviates the following statement:

There exists a set F C R of cardinality A (equivalently: for any
set £ C R of cardinality A) and there is a sequence of functions
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fn + E — R, converging on E pointwise but not converging
uniformly on any subset of E of cardinality k.

The following result provides some topological counterparts to Co(A, k).

Theorem 2.3. For any uncountable cardinals k < X < ¢ the following
are equivalent:

(1) Co(A, k),
(2) there is a set A C NN of cardinality \ and a sequence g; >
Go ... of continuous functions g, : A — R, which converges to

zero pointwise but does not converge uniformly on any set of
cardinality K,

(3) there is a k-K-Lusin set of cardinality X in NV,

(4) there is a Polish space X and a k-K-Lusin set of cardinality A
mn X.

Proof.

(1) = (2). Subtracting from each function in Cy(\, k) the limit
function, we get a sequence f, : E—R, |E| = A\, which converges to
zero pointwise but does not converge uniformly on any set of cardinality
k. For every n € Ny and z € E let u,(z) = max{|fi(z)| : i > n}
(recall that lim fi(x) = 0, hence the maximum is attained). Let us

note that u; > uy... and 0 < |f,| < u, for each n. The properties of
the sequence (f,,)22; yield readily that the sequence (u,)S%, converges
to zero pointwise on F but it does not converge uniformly on any subset
of E of cardinality k.

Let h : E— A be a bijection onto a set A C 2" such that all the func-
tions g, = u,oh~! are continuous (one may define h as the Marczewski
characteristic function (cf. [10]) of a countable family {F, : n € N}
of subsets of F, separating the points of F and containing all sets of
the form wu* ((p, q)), where n € N, and p < ¢ are rationals). Then the
sequence g; > ¢s ... of continuous functions g, : A — R is as required.

(2) = (3). Let us fix a set A C NV of cardinality A and a sequence
g1 > go... of continuous functions g, : A— R, which converges to
zero pointwise but does not converge uniformly on any subset of A
of cardinality x. Let H be a Gs-set in NY with A C H C A and
such that each g, extends to a continuous function g, : H — R. Since
g1 > g2 > ..., for any x € H we have

1
lim g,(z) =0 & VpeN,Ine N, g,(z) < —,

n—oo p
sotheset G ={zr € H: lim g,(z) = 0} is a Gs-set in N containing A.
n—oo

Now, if K C G is compact, then by the Dini theorem (see [4, Lemma
3.2.18]), the sequence (§,)32, converges uniformly on K, hence also
(gn)52, converges uniformly on AN K, and therefore |A N K| < k.
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Finally, let w : G — NY embed G onto a closed subspace of NV (see
[7, Theorem 7.8]) and let E = w(A). Then |E N K| < k for every
compact set K C NV, as required.

(3) = (4). This implication is trivial.

(4) = (1). Let E be a subset of cardinality A of a Polish space
X such that |[E N K| < k for every compact set X' C X. Theorem
2.1 provides us with a sequence f; > f5... of continuous functions
fn : X — [0, 1] which converges to zero pointwise but does not converge
uniformly on any set with non-compact closure in X. Consequently,
the sequence (f,)22, converges to zero pointwise on E but any set
M C FE of cardinality x has a non-compact closure in X, so (f,)>2,
does not converge uniformly on M. Clearly, this completes the proof

of (1).
U

In two important cases statements Cy(k, A) are characterized in terms
of basic cardinal characteristics of the continuum, cf. [3].

Corollary 2.4.

(1) Cg(Nl,Nl) < b= Nl,
(2) Cy(c,¢) < 0 = ¢, provided that the cardinal ¢ is reqular.

Proof. We shall repeatedly make use of Theorem 2.3.

(1). Assume Cy(XN;,8;) and let £ C NN be a set of cardinality
N; whose intersection with every compact set K C NN is countable.
Clearly, E is unbounded in (N¥, <*), hence b = N;.

Conversely, if b = Ry, then any subset of NY of the form {f, : a < b},
where

e o < 3 < bimplies f, <* f3,
e for every f € N¥ there is v < b with f, £* f,

has countable intersection with every compact K C NN,

(2). Assume Cy(c,¢) and let £ C NN be a set of cardinality ¢ such
that |E N K| < ¢ for every compact set K C NY. Let {g, : @ <0} be a
dominating set in NY. In particular E = J,_,{f € E: [ <* go} and
the regularity of ¢ implies that 0 = «¢.

Conversely, if 0 = ¢, then any subset of N of the form {g, : @ < ¢},
where

o o < B < ¢ implies gg £* ga,
e for every f € NN there is a < ¢ with f <* g,,

has the property that |E'N K| < ¢ for every compact K C NV,
]

The proof of (4) = (1) in Theorem 2.3 yields also the following
result.



ON TWO CONSEQUENCES OF CH ESTABLISHED BY SIERPINSKI 7

Corollary 2.5. For any uncountable cardinals k < X\ < ¢, if £ is a
k-K-Lusin set of cardinality \ in a Polish space X, then there exists
a sequence fi > fo... of continuous functions f, : E — R, which
converges to zero pointwise but does not converge uniformly on any
subset of E of cardinality k.

Remark 2.6. As was mentioned in the introduction, the notion of a
K -Lusin set was introduced by Bartoszyriski and Halbeisen [2], where it
was pointed out that a reasoning of Banach and Kuratowski [1], estab-
lishing under CH the existence of a BK-Matriz, actually shows that the
existence of a BK-matrix is equivalent to the existence of a K-Lusin
set of cardinality ¢. Earlier, Sierpiriski [16] proved that a BK-Matrix
exists if and only if Cy holds. Combining these two results, we get the
equivalence "Cg < there exists a K-Lusin set of cardinality ¢ “ which
was obtained in Theorem 2.3 by a different reasoning.

3. UNIFORM CONTINUITY OF CONTINUOUS FUNCTIONS AND
STATEMENT Cs(\, k)

Recall that Cs(\, k) stands for the following statement:

There exists a set £ C R of cardinality A and a continuous
function f : E— R, which is not uniformly continuous on any
subset of E of cardinality k.

Sierpinski [17] proved that Cg implies Cy and his argument can
be easily adapted to establish a more general implication concerning
C;(\, k). Instead of repeating the argument of Sierpinski we present a
proof based on Theorem 2.3 which gives some additional information
about the involved sets.

Proposition 3.1. For any uncountable cardinals k < \ < ¢:
Cs(A\, k) = Co(\, k).

Moreover, if a set E C R, |E| = A, together with a continuous function
[+ E—R witness Cs(\, k), then there is a Gs-set G in R such that
FE CG and F is a k-K-Lusin set in G.

Proof. Let us extend f to a continuous function f : G — R over a
Gs-set G C R. Now, if K C G is compact, then the extension f
is uniformly continuous on K, hence so is f on £ N K. Therefore,
|EN K| < K, as f is not uniformly continuous on any set of cardinality
k. This shows that the equivalent to Cy(\, k) statement, formulated in
Theorem 2.3(4), is true, completing the proof. O

In the rest of this note we investigate the possibility of reversing
the above implication, at least for some pairs of uncountable cardinals
k< A<c.

In view of Proposition 3.1, a related question is whether a k- K-Lusin
set E in P always carries a continuous function f : E — R, which is



8 R. POL AND P. ZAKRZEWSKI

not uniformly continuous on any set of cardinality x. The negative
answer (cf. Theorem 3.3) is a consequence of the following general
result, closely related to the “limit systems” of Hurewicz [6].

Theorem 3.2. Let X be a Polish non o-compact space and let d be a
compatible completely bounded metric on X . Then for every continuous
function f : X — R there exists a closed copy of wrrationals P in X
such that f is uniformly continuous on P in the metric d.

Proof. Let ()A(,aAl) be the completion of (X, d); then X is compact, d
being totally bounded. Since X is not o-compact, by a theorem of
Hurewicz (see [7, Theorem 7.10]), X contains a closed in X copy of the
irrationals G. Let p be a complete metric on G.

We shall use generalized Hurewicz systems in the setting considered
in [12, Section 2.4] and [13, Section 2]. Namely, we shall define a pair
of families: (U, ) en<n of subsets of G, and (z,)sen<r of points in X with
the following properties (the closures are taken in X, B i(zs,e) ={z €
X :d(z,,x) < e} and for A C G, diam,(A) or diamg(A) stand for the
diameter with respect to p or d):

(1) Uy is relatively open in G, U, # 0,
diam, (U,) < 27tength(s)

U N U, = 0 for distinct s, ¢ of the same length,

U,-;; in particular, lim; dlamd(U ;) =0,
(8) diam(f(Uy)) < 2! for any i € N,
(9) if ¢; € Uy~ for each i € N, then the sequence (f(c¢;))ien is
convergent in R.
To define sets Uy and points x, we proceed as follows.

Let Uy be a non-empty relatively open set in GG such that f is bounded
on Uy and diam,(Up) < 1.

At the inductive step let n > 0 and assume that we have already
defined U, and x; for s € [N]=" and t € [N]<" satisfying the required
conditions. Fix s with length(s) = n and pick x, € U, \ G arbitrarily
(this is possible since G does not contain compact sets with non-empty
interior). Let us choose points a, € U such that lim, a, = =, and
the sequence (f(ay)), is convergent (first, we choose b, € Uy so that
lim, a, = x5 and then, using the fact that the sequence (f(b,)), is
bounded, we choose its convergent subsequence). Next, using the con-
tinuity of f on G, let us enlarge each a, to its open neighbourhood
U, in G so that relevant instances of conditions (1)—(8) are satisfied.
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Then (8) and the fact that the sequence (f(ay)), is convergent readily
yield (9).
Let

(10) P =, U{Us : length(s) = n}.
be the copy of the irrationals determined by the generalized Hurewicz
system (Us)sen<r, (Ls)semy<n ([13, Section 2]), where Ly = {z,} for

each s € NN, In particular, P = PU {2, : s € N} so P= PNG is
closed in GG, and hence also in X.

We claim that for each s € N<N
(11) ég(f) diam (f(Bd(xS, g)N P)) = 0.

To justify the claim, let us fix s € NN and for each i € N let us
pick ¢; € Usy. By (9), lim f(i) = r, and let J be an arbitrary open
1—00

interval containing r. From (7) and (8) we get iy such that f(Us~) C J,
whenever ¢ > 1.

Now, we can find an € > 0 such that Bj(x,,¢) is disjoint from any
U; with t # s and length(t) = length(s), i.e., cf. (10),

(12) W = By(zs,6) NP = U, N P.

For suppose that for every e > 0, (12) is false. This allows us to define
a sequence (2),en converging to xs such that the set Z = {z, : n € N}
is disjoint from Us.

By (3) and (5), Z N U, is finite for any ¢+ € N<N with ¢t # s and
length(t) = length(s). Then, since Z C Uy, it follows that we can find
t € N<N such that length(t) < length(s), Z N U, is infinite but Z N Uy
is finite for each ¢ € N. By (9), 7}1—2}0 2, = xy, however, by (3) and (6),

x; # x, and this contradiction completes the justification of (12).

Next, by appealing to (6), we can make ¢ still smaller to ensure that
Bj(xs,€) omits also all Us~; with i < i5. Consequently, cf. (10) and
(12), W C | Us~, hence f(W) C J.

i>io

This completes the justification of the claim, and let us note that (11)
means exactly that the oscillation of f at any point of P\ P = {x, :
s € NN} is zero. This guarantees that f can be extended continuously
over P. By compactness of P this extension is uniformly continuous,
and in effect we get uniform continuity of f on P.

O

As a corollary we obtain that not every x-K-Lusin set of cardinality
A in the irrationals is a witnessing set for Cg(A, k) (cf. [17, a remark at
the end of the paper]).

Theorem 3.3. If 0 = ¢, then there is a ¢c-K-Lusin set E in P of car-
dinality ¢ such that every continuous function f : E— R is uniformly
continuous on a subset of E of cardinality c.
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In particular, assuming CH, there is a K-Lusin set E C P of car-
dinality ¢ such that every continuous function f : E— R is uniformly
continuous on an uncountable subset of E.

Proof. We list all compact sets in P as (K, : « < ¢), and all closed

copies of irrationals in P as (P, : « < ¢), where each closed copy of

irrationals P in P appears in this transfinite sequence ¢-many times.
Then we inductively pick

To € Py \ <U Kﬁu{x5:6<a}>,
B<a
the choice being made possible by the assumption 0 = ¢ which means
that P is not covered by any collection of less that ¢-many its compact
subsets (cf. [3, Theorem 2.8]).
We let E = {z, : @ < ¢}. Let us notice that E is a ¢-K-Lusin set E
in P and

(1) E intersects each closed copy of irrationals in P in a set of
cardinality c.

To see that E is a set we are looking for, let f : £ — R be a
continuous function, and let X be a Gs-set in P containing F such that
f extends to the (uniquely defined) continuous function f:X >R

Now, E being a ¢- K-Lusin set in P, it cannot be covered by countably
many compact sets in P. Consequently, X is a non o-compact Polish
space contained in [0, 1], so by Theorem 3.2 there exists a closed copy
of irrationals P in X such that f is uniformly continuous on P (in the
metric inherited from [0, 1]). Shrinking P, if necessary, we may assume
that P is closed also in P. By (1), |E N P| = ¢ and we conclude that f

is uniformly continuous on £ N P.
O

On the other hand, we have the following result.

Theorem 3.4. If 0 = ¢, then there is a ¢c-K-Lusin set E of cardinality
¢ in P and a continuous function f : E— R, which is not uniformly
continuous on any set of cardinality c.

Consequently, we have Cg(c,¢) < Cy(c,¢) (in ZFC), and each of
the statements is equivalent to the assertion 0 = ¢, provided that the
cardinal ¢ is reqular.

Our proof will be based on the following proposition.

Proposition 3.5. Let f : P — [0,1] be a continuous function such

that the closure G(f) in [0,1]* of the graph G(f) of f intersects each
{q} x [0,1], ¢ € QN [0,1], in an uncountable set. Then P cannot be

covered by less than 0 sets on which f is uniformly continuous.

Proof of Proposition 3.5. Let A be a collection of subsets of P such
that |A] < ® and f is uniformly continuous on each A € A. We will
show that P\ |J.A # 0.
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Let A € A. Then f|A being uniformly continuous extends contin-
uously over the closure of A in [0,1], and let K4 be the graph of this
extension.

For each ¢ € QN[0, 1], K 4 intersects {q}x[0, 1] in at most a singleton,
and hence | |J (KaN({¢g}x[0,1]))| < d. If V is an open neighbourhood

AcA

of (t,f(t)), t € P, in [0,1]?, then there are non-empty open intervals
I, Iyin [0,1] such that ¢ € I, Iy x I C V and f(I[;NP) C I,. It follows

that for every ¢ € I N Q, G(f) N ({g} x L) =G(f)n({q} x [0,1]), so
by the properties of f, |G(f) N ({¢} x I,)| = ¢. Consequently, the set
)N

(@x [0, 1)\ | J Ka

AeA

H=3a0)

is dense in G(f).

Since G(f) is a Gs-set dense in G(f), by the Baire theorem, each
F,-set covering G(f) must hit H, and by the Kechris-Louveau-Woodin
theorem (see [7, Theorem 21.22]), we get a Cantor set C' C G(f) U H
such that P = C'NG(f) is a copy of the irrationals, closed in G(f).

For each A € A, K, being compact, the set KNP = K,NC

is compact and since |A| < 0 it follows that P\ |J Ka # 0 (cf.
AeA
(3, Theorem 2.8]). In effect, G(f)\ U Ka # (0 which proves that
AeA

Pg A O

With Proposition 3.5 in hand, we can easily get Theorem 3.4.

Proof of Theorem 3.4. Let f : P — [0,1] be as in Proposition 3.5 (see
Example 3.6).

Let as list as (F, : a < ¢) all closed sets in [P on which f is uniformly
continuous. Since 0 = ¢, by the assertion of Proposition 3.5, we can
inductively pick points

To €PN\ <U Fgu{m5:5<a}>,a<c,
B<a

and finally let E = {z, : a < c}.

Then if A C E and f is uniformly continuous on A, the closure of A
in P is listed as some Fy,, and hence |A4| < ¢.

Likewise, every compact set K in [P is on the list, so |[E N K| < ¢
which shows that E is a ¢-K-Lusin set in P.

Finally, the equivalence of the statements Cg(c, ¢) and Cy(c, ¢) follows

from Proposition 3.1 and Corollary 2.4.
O

For the sake of completeness we recall an example given by Kura-
towski and Sierpinski in [9], of a function satisfying the assertion of
Proposition 3.5.
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Example 3.6. Let ¢ : [0,1] — [0, 1] be given by the formula
- Qb(t B Qn)
o) =) —on
n=1

where ¢(t) = |sin(3)| for t # 0 and $(0) = 0, and (q1,¢,...) is an
injective enumeration of QN [0, 1].

Then f =|([0,1]\ Q) satisfies the assertion of Proposition 3.5. To
see this, let us fix q,, and let

o(t) = Z w fort €10,1].

m#n

Then o is continuous at gy,

u(t) = olt) +
and the definition of ¢ yields that
G N {an} x [0,1]) = {an} x [o(t), 0 () +27"].

The next result shows, in particular, that the statements Cg(RXy, X;)
and Cy(Ry, N;) are equivalent.

¢(t _ Qn)
2" 7

Let us recall that a subset E of a Polish space X is concentrated in
X onaset D C X, if E\U is countable for every open in X set U
that contains D. Let us note that if X = C' is the Cantor set, () is a
countable dense set in C, P = C'\ Q, and E C P, then FE is a K-Lusin
set in P if and only if E is concentrated in C on @ (cf. [2, Proposition
3.4]). Let us also recall that F is a X-set in X if for every countable
set L in X, L is a relative G-set in E'U L; by a theorem of Sierpinski,
there is (in ZFC) an uncountable X'-set in R, cf. [8].

Theorem 3.7. For any uncountable cardinal v < ¢, the existence of a
N-set T of cardinality v in the Cantor set C C R and a K-Lusin set S
in P=C\ Q of cardinality v, where Q) is a countable dense set in C,
implies Cs(v,Xy). Consequently, the existence of a X' -set of cardinality
v in the Cantor set C implies that Cs(v,¥y) < Co(v,Ny) and hence,
we have (in ZFC) Cs(N1, V1) < Cy(Ry,Ny), and each of the statements

15 equivalent to the assertion b = Ny,

Proof. Let H be the graph of a bijection from S onto 7. Since S is
concentrated in C' on @), it follows that H is concentrated in C' x C
on () x C. Indeed, if U is an arbitrary open set in C' x C containing
QxC,and D = (C xC)\ U, then V= C \ proj,(D) is an open set
in C' containing ) (where proj, is the projection of C' x C' onto the
first axis). Thus V' contains all but countably many points of S, and
consequently, the set H \ U is countable.

There is a continuous map ¢ : C' x C'— C such that ¢[(P x C) is
a homeomorphism onto G = ¢(P x C'), and the set D = ¢(Q x C)
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is countable and disjoint from G (a simple argument to this effect is
given in [14, Lemma 4.2]).

Let E = ¢(H) and f = ¢ '|E : E — H. Upon an embedding of
C x C' in R, we can consider f as a function from a subset of R of
cardinality v into R and we are going to prove that it is a witness that
statement Cg(v,N;) is true.

Aiming at a contradiction, assume that f|A is uniformly continuous
(with respect to any metric compatible with the topology of C'x C') on
an uncountable set A C E and let B = f(A) = ¢~'(A). Then, since
¢|B : B — A is also uniformly continuous, the function f|A extends
to a homeomorphism f : A — B, where A and B are the closures of A
and B in C' and C x C, respectively (cf. [4, Theorem 4.3.17]).

Let us notice that E is concentrated on D in C. It is easy to see
that this implies that A is concentrated on AND in A, hence also B is
concentrated on L = f(AN D) in B. Clearly, L is a countable subset
of B C C x C and B is concentrated on L also in C' x C. Therefore,
B’ = proj,(B) is concentrated on L' = proj,(L) in C' (where proj, is
the projection of C' x C' onto the second axis). It follows that L’ is a
countable set in C' which is not a Gs-set in B’ U L’. This, however,
contradicts the fact that 7" is a M-set in C' and B’ C T'.

The assertion, stating the equivalence of statements Cg(v,R;) and
Cy(v,N;) assuming the existence of a N-set of cardinality v in the
Cantor set follows now from Theorem 2.3 and Proposition 3.1. Indeed,
Cy(v,Ny) implies that there is also a K-Lusin set in P = C'\ @ of
cardinality v, where @) is a countable dense set in C' (cf. Theorem 2.3),
which by what we have already proved, yields Cg(v, X;). The converse
implication is always true (see Proposition 3.1).

The final assertion now follows immediately since, as we recalled,
the existence of a N-set T of cardinality X; in the Cantor set does not
require any additional set-theoretical assumptions. U

While the status of the implication Cy = Cj, the central topic of
this note, remains unclear, the following conditions, sufficient for the
validity of Cy = (g, hint at difficulties in finding a model of ZFC
where, possibly, Cy is true but Cy is false.

Proposition 3.8. If either there are no K -Lusin sets in NN of cardi-
nality ¢ (in particular, if either b > Xy or d < ¢) or at least one of the
following statements is true:

(1) there exists a Lusin set in R of cardinality c,
(2) there exists a N-set in the Cantor set of cardinality c.
then Cg < Cy.

Proof. The non-existence of K-Lusin sets in NY of cardinality ¢ makes
Cy false by Theorem 2.3. Similarly, the existence of a Lusin set in R of
cardinality ¢ makes Cg true, see Comment 4.4.
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The existence of a X-set of cardinality ¢ in the Cantor set C' implies
that Cg(c,Ry) < Cy(c, Ny), by Theorem 3.7.
O

4. COMMENTS

4.1. Mappings into the Hilbert cube. One can show that state-
ment Cs(\, k) is equivalent to the following statement

C{(A, k) There exists a set £ C R of cardinality A and a continuous
function f : E— [0, 1]Y, which is not uniformly continuous on
any subset of E of cardinality k.

Moreover, we can choose the same witnessing set F for Cg(\, k) and
C%{(\, k). However, this is no longer true when we replace E C R
by an arbitrary separable metrizable space, as shown by the following
example, where uncountable-dimensional means that the set £ cannot
be covered by countably many zero-dimensional sets.

Example 4.1. Assuming that no family of less than ¢ meager sets
covers R, there exists an uncountable-dimensional set E C [0, 1]N such
that

(1) there is a continuous function f : E — [0, 1|N, which is not uni-
formly continuous on any subset of E of cardinality c,

(2) each continuous function g : E — R is constant on an uncountable-
dimensional subset of E.

4.2. Mappings into the Hilbert space. One can show that state-
ment Cy(\, k) is equivalent to the following statement

C{ (A, k) Thereis a set E C R of cardinality A and a continuous function
f + E — Iy, which is not uniformly continuous on any subset of
E of cardinality k.

Moreover, every k-K-Lusin set of cardinality A is a witnessing set
for C¢ (A, k). In particular, Theorem 3.3 and Comment 4.1 show that,
under CH, there exists a K-Lusin set £ C R of cardinality ¢ such that
E admits a continuous function f : E — [? which is not uniformly
continuous on any uncountable subset of F, but each continuous map
g: E — [0,1]V is uniformly continuous on an uncountable subset of E.

4.3. A characterization of complete metrizability. One can show
that the existence of a function sequence described in Theorem 2.1
characterizes completeness of a separable metrizable space X.

In fact, the following more general result can be obtained (for ter-
minology see [4]).

Proposition 4.2. Let X be a Hausdorff space. Then X is a Cech-
complete Lindelof space if and only if there is a sequence f1 > fo > ...
of continuous functions f, : X — [0,1] converging pointwise to zero
but not converging uniformly on any closed non-compact set in X.
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4.4. Uniform continuity of monotone functions. In the course
of showing that CH implies Cyg Sierpiniski [18, Théoreme 6, page 45]
proved in fact that CH yields the negation of the following statement

(*) For every non-decreasing function f : [0, 1] — [0, 1], each subset
of [0, 1] of cardinality ¢ contains a set of cardinality ¢ on which
f is uniformly continuous.

Sierpinski considered an increasing function f : [0, 1] — [0, 1] which
is discontinuous precisely at the rationals in [0, 1] (a classical example of

n

such a function was defined by Lebesgue letting L(z) = 31, cn. go<ny 27
where (g, : n € N) is an injective enumeration of QN [0, 1]). He proved
that the (continuous) restriction of f to the set P is not uniformly
continuous on any uncountable subset of a Lusin set in P.

On the other hand, from the main theorem of a recent paper by
Lyubomir Zdomskyy [19, Theorem 1.1} one can derive the following
result.

Theorem 4.3. Statement (x) is true in the Miller model (a generic
extension of a ground model of GCH with respect to the iteration of
length wy with countable support of the Miller forcing).

In contrast to Proposition 3.5, a result closely related to Theorem
4.3 asserts that in the Miller model, given any non-decreasing function
f:[0,1] — [0,1], P can be covered by less than d = ¢ sets on which
the restriction of f is uniformly continuous.
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